
Digital Object Identifier (DOI) 10.1007/s100529900063
Eur. Phys. J. C 9, 479–485 (1999) THE EUROPEAN

PHYSICAL JOURNAL C
c© Springer-Verlag 1999

QCD, conformal invariance and the two Pomerons
S. Munier, R. Peschanski

CEA, Service de Physique Theorique, CE-Saclay, F-91191 Gif-sur-Yvette Cedex, France

Received: 8 February 1999 / Revised version: 8 March 1999 / Published online: 18 June 1999

Abstract. Using the solution of the BFKL equation including the leading and subleading conformal spin
components, we show how the conformal invariance underlying the leading log(1/x) expansion of pertur-
bative QCD leads to elastic amplitudes described by two effective Pomeron singularities. One Pomeron is
the well-known “hard” BFKL leading singularity, while the new one appears from a shift of the higher
conformal spin BFKL singularities from subleading to leading position. This new effective singularity is
compatible with the “soft” Pomeron and thus, together with the “hard” Pomeron, meets at large Q2 the
“double Pomeron” solution which has recently been conjectured by Donnachie and Landshoff.

1 Introduction: two Pomerons?

In a recent paper [1] the conjecture was put forward that
not one, but two Pomerons could coexist. This proposal
is based on a description of data for the proton singlet
structure function F (x, Q2) in a wide range of x(< 0.7)
and all available Q2 values (including also the charm struc-
ture function and elastic photoproduction of J/Ψ on the
proton). The singlet structure function reads

F
(
x, Q2) =

2∑
i=0

Fi

(
x, Q2) =

2∑
i=0

fi

(
Q2) x−εi , (1)

corresponding [1] to the sum of three contributions,
namely a “hard” Pomeron contribution with a fitted inter-
cept ε0 = 0.435, a “soft” Pomeron exchange, as seen in soft
hadronic cross sections with a fixed intercept ε1 = 0.0808,
and a secondary Reggeon singularity necessary to describe
the larger x region with intercept fixed at ε2 = −0.4525.
For convenience we here resume the parametrization used
in [1]:

f0
(
Q2) = A0

(
Q2

Q2 + a0

)1+ε0

×
(

1 + X log
(

1 +
Q2

Q2
0

))

f1
(
Q2) = A1

(
Q2

Q2 + a1

)1+ε1

× 1
1 +

√
Q2/Q2

1

,

f2
(
Q2) = A2

(
Q2

Q2 + a2

)1+ε2

,

ε0 = 0.418, ε1 = 0.0808, ε2 = −0.4525,

A0 = 0.0410, A1 = 0.387, A2 = 0.0504,

a0 = 7.13, a1 = 0.684, a2 = 0.00291,

Q2
0 = 10.6, Q2

1 = 48.0,

X = 0.485.

The “hard” Pomeron is in particular needed to describe
the strong rise of F at small x observed at HERA [2]. The
key observation of [1] is that the agreement with the data
can be obtained by assuming an opposite Q2 behavior for
the two Pomeron contributions in (1). Indeed, for Q2 >
10 GeV2, f0(Q2) is increasing and f1(Q2) decreasing (the
precise parametrizations of [1] are given in a Regge theory
framework).

This picture is suggestive of a situation where the
“soft” and “hard” Pomerons are not one and the same
object, but two separate Regge singularities with rather
different intercept and Q2 behavior. The “hard” Pomeron
may be expected to be governed by perturbative QCD
evolution equations. Indeed, at small x, a Regge singular-
ity is expected to occur as a solution of the BFKL equa-
tion [3] corresponding to the resummation of the lead-
ing (ᾱ ln 1/x)n terms in the QCD perturbative expansion,
where ᾱ = αNc/π is the (small) value of the coupling
constant of QCD. The intercept value is predicted to be
ε0 = 4ᾱ ln 2. It is interesting to note that the phenomeno-
logical fit for the hard Pomeron in [1] corresponds to a
reasonable value for ᾱ(≈ 0.15). The goal of the present
paper is to show that the global conformal invariance of
the BFKL equation [4] leads to a natural mechanism gen-
erating both the “hard” and “soft” Pomeron singularities.

The plan of the paper is as follows: in Sect. 2, using
the BFKL equation and the set of its conformal-invariant
components, we exhibit the phenomenon generating slid-
ing singularities. In Sect. 3, we explicitly describe the two
Pomeron configuration obtained from the “sliding” mech-
anism. In Sect. 4 we confront the resulting effective singu-
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larities with the parametrization of [1] and discuss some
expectations from non-perturbative corrections at small
Q2. Finally, in Sect. 5, we discuss some phenomenologi-
cal and theoretical implications of our QCD two Pomeron
mechanism.

2 The “sliding” phenomenon

Let us start with the solution of the BFKL equation ex-
pressed in terms of an expansion over the whole set of con-
formal spin components [4]. For the structure functions,
one may write (using the notation Y = ln 1/x)

F
(
Y, Q2) =

∞∑
p=0

Fp

(
Y, Q2) (2)

=
∞∑

p=0

∫ 1/2+i∞

1/2−i∞
dγ

(
Q

Q0

)2γ

eᾱχp(γ)Y fp (γ) ,

with

χp (γ) = 2Ψ (1) − Ψ (p + 1 − γ) − Ψ (p + γ) (3)

and Q0, being some scale characteristic of the target
(onium, proton, etc.). χp(γ) is the BFKL kernel eigen-
value corresponding to the SL(2, C) unitary representa-
tion [4] labelled by the conformal spin p. It is to be noted
that the p = 0 component corresponds to the dominant
“hard” BFKL Pomeron. Usually the p 6= 0 components,
required by conformal invariance1 but subleading by pow-
ers of the energy, are omitted with respect to the leading
logs QCD resummation. They are commonly neglected in
the phenomenological discussions. We shall see that they
may play an important rôle, however.

The couplings of the BFKL components to external
sources are taken into account by the weights fp(γ) in (2).
Little is known about these functions and we shall treat
them as much as possible in a model-independent way. For
instance, they should obey some general constraints, such
as a behavior when γ → ∞ ensuring the convergence of
the integral in (2). We will see that some extra analyticity
constraints will appear in the context of the two Pomeron
problem2.

The key observation leading to the sliding phenomenon
starts by considering the successive derivatives of the ker-
nels χp(γ). One considers the following suitable form:

χp (γ)

≡
∞∑

κ=0

{
1

p + γ + κ
+

1
p + 1 − γ + κ

− 2
κ + 1

}
,

1 In the following, we will stick to integer values of p since
half-integer spin components exist but do not contribute to
elastic cross-sections [5].

2 Note that a general constraint on the coupling of the BFKL
kernel to external particles is coming from gauge invariance [4].
We checked that this constraint is rather weak in our case, and
not relevant to the discussion.

χ′
p (γ)

≡ −
∑

κ

{
1

(p + γ + κ)2
− 1

(p + 1 − γ + κ)2

}
,

χ′′
p (γ)

≡ 2
∑

κ

{
1

(p + γ + κ)3
+

1
(p + 1 − γ + κ)3

}
. (4)

As is obvious from (4), the symmetry γ ⇐⇒ 1−γ leads to a
maximum at γ = 1/2 for all p, and thus to a saddle point of
expression (2) at Re(γ) = 1/2 for ultra-asymptotic values
of Y . The saddle-point approximation gives

F
(
x, Q2) |Y →∞

≈
(

Q

Q0

) ∞∑
p=0

fp

( 1
2

)
√

πᾱχ′′
p

( 1
2

)
Y

eᾱχp( 1
2 )Y . (5)

The Q dependent factor corresponds to a common anoma-
lous dimension 1/2 for all p. Note that the known Q depen-
dent “kT diffusion” factor is absent in this ultra-asympto-
tic limit.

The series of functions of Y is such that only the first
term has intercept ᾱχp(1/2) larger than 0. Indeed,

χ0

(
1
2

)
= 4 ln 2 ≈ 2.77,

χ1

(
1
2

)
= χ0

(
1
2

)
− 4 ≈ −1.23,

χp+1

(
1
2

)
< χp

(
1
2

)
< · · · < 0, p ≥ 1. (6)

This ultra-asymptotic result is the reason why the confor-
mal spin components with p > 0 are generally neglected or
implicitly taken into account by ordinary secondary Regge
singularities with intercept less than 0. However, at large
enough values of Q2 and even for very large Y , a sliding
phenomenon moves away the singularities corresponding
to these conformal spin components, leading to a behavior
very different from (5). Indeed, the sliding mechanism is
already known [6,7] to generate the diffusion factor of the
leading p = 0 component. However it has an even more
important effect on the higher spin components as we shall
discuss now.

The sliding mechanism is based on the fact that
χ′′

p(1/2), the second derivative of the kernels at the asymp-
totic saddle-point value, becomes in absolute value very
small when p ≥ 1, in such a way that the real saddle
points governing the integrals of (2) are considerably dis-
placed from γ = 1/2. Indeed, considering the expansions
(4), one has

χ′′
0

(
1
2

)
= 28ζ(3) ≈ 33.6,

χ′′
1

(
1
2

)
= 28ζ (3) − 32 ≈ 1.66,
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1.66 > · · · > χ′′
p

(
1
2

)
> χ′′

p+1

(
1
2

)
> 0, p ≥ 2 . (7)

For the p = 0 component, the corresponding integral in (2)
can be evaluated by a saddle point in the vicinity of γ =
1/2, and gives the diffusion factor exp(− log2(Q/Q0)2/
2ᾱY χ′′

0(1/2)). Considering the rapid decrease by a fac-
tor 20 of the modulus of the second derivative for p = 1,
it is easy to realize that, for components p ≥ 1, it is no
more justified to evaluate the integrals in the vicinity of
γ = 1/2, the real saddle point being away from this value.
We shall make the correct evaluation in the next section.

3 The “sliding” mechanism

Let us consider the Fp component of the summation (2)
in the following way: For each value of (Y, ln(Q2/Q2

0)), we
compute the effective intercept (in units of ᾱ) (∂ lnFp/
ᾱ∂Y ) displayed as a function of the effective anomalous
dimension (∂ lnFp/∂ lnQ2) = γc. Our observation is that,
for any weight fp(γ) in (2), the resulting set of points accu-
mulates near the curve χp(γ). This result is valid provided
a saddle point dominates the integral.

The proof goes as follows: If a saddle point γc domi-
nates the integral (2) for Fp(Y, Q2), the saddle-point equa-
tion

∂ lnFp

∂γc
= 2 ln (Q/Q0)

2

+ ᾱY χ′
p (γc) + [ln fp (γc)]

′ = 0 (8)

is verified and the resulting integral is approximated by

Fp

(
Y, Q2)

≈ (Q/Q0)
2γc eᾱχp(γc)Y fp (γc){

2π
(
ᾱY χ′′

p (γc) + [ln fp (γc)]
′′)}1/2 . (9)

Neglecting in (9) derivatives of the slowly varying saddle-
point prefactor {· · ·}−1/2, one may write

d lnFp

ᾱdY
=

∂ lnFp

∂γc
× dγc

ᾱdY
+

∂ lnFp

ᾱ∂Y

=
∂ lnFp

ᾱ∂Y
≡ χp (γc)

d lnFp

d lnQ2 =
∂ lnFp

∂γc
× dγc

d lnQ2 +
∂ lnFp

∂ lnQ2

=
∂ lnFp

∂ lnQ2 ≡ γc, (10)

where one uses the saddle-point equation (8) to elimi-
nate the contributions due to the implicit dependence
γc(Y, Q2). This proves our statement.

Interestingly enough, the property (10) is valid for any
weight fp(γ), and thus can be used to characterize the
generic behavior of the expression (2). The only condition
is the validity of a saddle-point approximation which is
realized whenever Q2 or Y is large enough.

Let us discuss some relevant examples. In Figs. 1 and
2 we have plotted the result of the numerical integra-
tion in expression (2) for p = 0, 1, 2, choosing fp(γ) ≡
1/(cos πγ)/4. This weight is chosen in such a way that
the convergence properties of the integrands are ensured
and no extra singularity is generated for |γ| < 2. Other
weights with the same properties were checked to give the
same results. For comparison we also display the functions
χ0(γ), χ1(γ) and χ2(γ). Note that we have also included
for the discussion the auxiliary branches of χ0(γ) for the
intervals −1 < γ < 0 and −2 < γ < −1.

The results both for p = 0 (white circles) and p = 1, 2
(black circles) are displayed in Fig. 1 for a fixed large value
of total rapidity Y = 10 and various values of ln Q2/Q2

0,
while in Fig. 2 they are shown for a fixed value of
lnQ2/Q2

0 = 4 and various Y . Indeed, it is seen on these
plots that the saddle-point property (10) is verified, even
for the auxiliary branches3. The observed small systematic
shift of the numerical results with respect to the theoret-
ical curves χ(γ) is well under control. It is related to the
saddle-point prefactor in (9).

By various verifications, we checked that the results
shown in Figs. 1 and 2 are generic if the following three
conditions are realized:
(i) Y or lnQ2/Q2

0 are to be large enough (≥ 2, 3) to allow
for a saddle-point method.
(ii) fp(γ) is constrained to ensure the convergence and
positivity of the integrals of expression (2) in the complex
plane.
(iii) fp(γ) has no singularity for Re(γ) > −p.

The striking feature of the results displayed in Figs. 1
and 2 is that, while remaining in the vicinity of the curve
χp(γc), d lnFp/ᾱdY and d lnFp/d lnQ2 are shifted away
from the ultra-asymptotic saddle point at γ = 1/2. More-
over, the shift is larger if the conformal spin p is higher.

Let us make a particular comment on the analyticity
constraint (iii). Obviously, the presence of a singularity at
Reγ > −p would prevent the existence of a shift. Indeed,
in Fig. 3, we show the result for fp(γ) = (γ cos πγ/4)−1

where we have explicitly violated the constraint (iii) by
a pole at γ = 0. As a result, the components F1 and
F2, remain still very close to their reference curves χ1(γ)
and χ2(γ), but they appear “sticked” at the singularity
point γ = 0. Thus the relation (10) remains satisfied, but
the sliding mechanism is “frozen” by the singularity, as
expected from the analyticity properties.

The main consequence of the sliding mechanism is to
substantially modify the evaluation of the sum (2) with re-
spect to the ultra-asymptotic expectation (5). Indeed4 the
situation seen on Figs. 1 and 2 is general: the first contri-
bution F0 is subject to a rather small shift from γ = 1/2,
while the p = 1 component F1 remains at values where
d lnF1/ᾱdY is slightly above 1 and d lnF1/d lnQ2 is be-

3 In the case of the two auxiliary branches considered in
Figs. 1 and 2, we have considered an integration contour shifted
by one and two units to the left in order to separate the ap-
propriate contributions from the leading ones.

4 Using various examples we found this result to be generic
provided constraints (i)–(iii) are verified.
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χ0χ1χ2

Fig. 1. Plot of effective intercept vs.
effective dimension at fixed Y . The
effective intercept ∂ ln Fp/ᾱ∂Y plot-
ted vs. the effective anomalous dimen-
sion ∂ ln Fp/∂ ln Q2 is compared to the
χp(γ) functions for the 3 first conformal
spin components (p = 0, 1, 2). They are
computed for a fixed value of Y = 10
and 4 values of ln Q2/Q2

0 = {4, 6, 8, 10}.
The chosen weight in the integrals (2),
see text, is fp(γ) = 1/(cos πγ/4). Black
circles: numerical results for p = 1, 2
components; white circles: numerical
results for the p = 0 component com-
puted for 3 different integration con-
tours for Reγ = 0.5, −0.5, −1.5; white
dots: ultra-asymptotic saddle points at
γ = 1/2; full lines: the functions χp(γ)
for (1, 2); dashed lines, the function
χ0(γ) including two auxiliary branches.
Arrows indicate the direction of increas-
ing Q

-2 -1 1 2 3
g

-2

2

4

χ0χ1χ2

Fig. 2. Plot of effective intercept vs.
effective dimension at fixed Q2. The
same as in Fig. 1 but now for fixed
ln Q2/Q2

0 = 4. The results are com-
puted for Y = {4, 6, 8, 10}. The arrows
describe increasing Y .

low −1/2. The higher components F2 and a fortiori Fp>2
lie in regions with negative effective intercept and lower
and lower values of the effective anomalous dimension.

It is instructive to compare the results of Figs. 1 and
2 for the p = 1 component with those obtained for the
auxiliary branches of the p = 0 one. Though being situ-
ated in the same range of effective anomalous dimension
γ as the p = 1 component, the first auxiliary branch gives
sensibly lower (and almost all negative) values of the effec-
tive intercept in the kinematical range considered. Thus,
the corresponding contributions to the p = 0 amplitude
are subdominant in energy with respect to the spin 1 am-
plitude. The same property holds for the second auxiliary
branch which stays subdominant with respect to the p = 2
component which in any case is itself subdominant with
respect to p = 1.

Thus, the mechanism we suggest for the two Pomeron
scenario is the following: the rôle of the “hard” Pomeron

is played (as it should be) by the component F0, while
the rôle of the “soft” Pomeron is played by the other
components, principally the component with unit confor-
mal spin F1. Here this mechanism is realized in a range
(Y, lnQ2/Q2

0) where perturbative QCD (with resumma-
tion) is valid. Extrapolation to the non-perturbative do-
main will be discussed in the next section.

4 Physical expectations

It is now worthwhile to discuss our results, obtained from
QCD and conformal symmetry, in the context of the phe-
nomenological analysis of [1]. Our goal is not to identify
the two approaches, since the theoretical conformal spin
expansion (2) is only valid in the perturbative QCD region
at large Y and Q2, while the approach of [1] takes into ac-
count the data in the whole range of Q2. Nevertheless, it is
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Fig. 3. Plot of effective intercept vs. ef-
fective dimension for a singular weight.
The plot is the same as Fig. 1 with a
weight fp(γ) ∝ 1/(γ cos πγ/4), i.e. sin-
gular at γ = 0. Note the accumulation
of black circles near the singularity at
Re γ = 0 for p = 1, 2.

-1 -0.5 0.5 1 1.5 2
g

-0.2

0.2

0.4

0.6

ε0ε1

Fig. 4. Comparison with [1]. The plot
is similar to Fig. 1, except for a rescal-
ing of the vertical coordinate Y → ᾱY ,
with ᾱ = 0.15. The curves denoted
ε0,1 correspond to the same rescaling of
χ0,1(γ). The black circles correspond to
our calculations at fixed Y = 10 and
ln Q2/Q2

0 = (4, 6, 8, 10). The results for
[1] corresponding to the same values of
Y and ln Q2/Q2

0 are given by crosses.
The arrows indicate the direction of in-
creasing Q2.

interesting to confront our resulting effective parameters
with those obtained from the description of [1].

In Fig. 4 we show a plot comparing our results with
those obtained from the two Pomeron components of [1] in
terms of the effective parameters as previously. In the case
of the parametrization of paper [1], the effective intercept
and anomalous dimension are easily identified as, respec-
tively, εi and d ln fi(Q2)/d lnQ2, see (1). In order to make
contact with phenomenology, we have fixed ᾱ = 0.15,
and Q0 = 135 MeV. This last value is somewhat arbi-
trary but corresponds to rather high values of ln(Q/Q0)2
in the physical range, justifying the existence of a signif-
icant saddle point. In practice, in Fig. 4, we have consid-
ered Y = 10 and ln(Q/Q0)2 = (4, 6, 8, 10). The crosses
in Fig. 4 correspond to the effective parameters extracted
from the parametrization [1] and the black dots to our
numerical results of the integrals (2) for the same values
of the kinematical variables. We performed the calcula-
tion with fp(γ) ∝ 1/(cos πγ/4), but checked the validity

of the results for other weights (with similar analyticity
properties, cf. Sect. 3.)

The main thing to be noticed is the reasonable agree-
ment between both results for large values of Q2 corre-
sponding to the direction of the arrows on the figure. A
few remarks are in order:
(i) The leading “hard Pomeron” singularity obtained by
our results is of the type used e.g. in the phenomenologi-
cal description of proton structure functions in the dipole
model of BFKL dynamics [7]. However the value of the
coupling constant, chosen here to match with the deter-
mination of the hard component by [1], is larger than in
one Pomeron fits [7] and in better agreement with the
original BFKL framework.
(ii) The nonleading singularity is obtained in the correct
range fixed by [1] to be given by the “soft” Pomeron [8].
It is to be remarked that, while the “hard” Pomeron sin-
gularity is mainly fixed by the choice of ᾱ, the nonleading
one is a result of the sliding mechanism. We thus find
this feature to be model independent and related to the
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asymptotic conformal invariance of the input amplitudes.
(iii) As also seen in the figure, the agreement is not quan-
titative, especially at lower Q2, since the results obtained
from our (2) appear as moving effective singularities while
those from paper [1] are, by definition, fixed Regge singu-
larities.

Let us comment further on this important difference.
In perturbative QCD, there being obeyance to a renor-
malization group property, one expects in rather general
conditions a scale-dependent evolution, different from the
Regge-type of singularities, at least for the singlet channel
[9] 5. It is thus not surprising that the various components
obtained from our approach show this characteristic fea-
ture, see Figs. 1, 2, 3 and 4. On the contrary, pure Regge
singularities will correspond to fixed intercepts as shown
in Fig. 4 by the horizontal lines.

We feel that moving effective singularities will remain
a typical feature of the “hard” singularity at high Q2, at
least if perturbative QCD is relevant in this case. The
situation is obviously different for the “soft” singularity
the intercept of which is fixed at the known “universal”
value for soft interactions [8]. The behavior of the “soft”
singularity when Q2 becomes small is not determined in
our perturbative approach. It only predicts that it will be-
come dominant when Q2 will approach and decrease be-
low Q2

0, as indicated by the effective anomalous dimension.
Non-perturbative QCD effects could thus be expected to
stabilize the perturbative soft singularity at the known lo-
cation of the phenomenological soft Pomeron6. Moreover,
one would have to consider also the other higher conformal
spin components.

Some qualitative arguments can be added in favor of
specific non-perturbative effects for conformal spin com-
ponents. Indeed, the same reason leading to the sliding
mechanism, namely the smallness of χ′′

p(γ) in the vicinity
of γ = 1/2, implies a large “kT diffusion” phenomenon
[6]. One typically expects a range of “kT diffusion” for the
gluon virtuality scales determining the spin component Fp

depending on p as (χ′′
p(1/2))−1. Thus, while the contam-

ination of non-perturbative unitarization effects could be
limited for F0, it is expected to be strong for F1 and the
higher spin components Fp>1. All in all, it is a consistent
picture that the softer components obtained in a pertur-
bative QCD framework at high Q2 are precisely those for
which stronger “kT diffusion” corrections are expected. To
go further would require a study of the low-Q2 region, in
particular of higher-twist contributions, which are outside
the scope of our present paper7.

Concerning the physical meaning of the analyticity
constraints imposed on the integrand factors fp(γ): they
amount to the need to discuss the conformal coupling of

5 Note, however, the different perturbative approach of [10].
6 Another possibility [11] could be a pole in the weight fp(γ)

at a suitable position, but this would not be easily justified by
a physical property like e.g. conformal invariance.

7 The known studies on higher-twists effects at low x [12]
seem to show a behavior different from the one obtained from
the sliding mechanism of higher conformal spin components.
This feature certainly deserves further study.

the BFKL components to, say, the virtual photon and
the proton (or, more generally, other projectiles/targets).
Leaving for future work the complete derivation of the
conformal couplings to different conformal spins [13,14],
let us assume that the coupling is spin independent. Inter-
estingly enough an eikonal coupling to a qq̄ pair [15] then
appears to be forbidden, since it has a pole at γ = 0, corre-
sponding to the presence of the gluon coupling in the im-
pact factor [16]. However, considering the direct coupling
through the probability distribution of a virtual photon
in terms of qq̄ pair configurations [17], we remark, follow-
ing the derivation of [16], that the pole due to the gluon
coupling is cancelled with no other singularity at γ = 0.
We explicitly checked that we obtain results very similar
to those displayed in Figs. 1, 2 and 3 within this frame-
work. Note that such a model ensures the positivity of the
conformal spin contributions.

In our derivation, which follows from the conformal in-
variance of the BFKL equation, we have sticked to the case
of a fixed coupling constant. It has been proposed [4,18,
19] that the solution of the BFKL equation, once modified
in order to take into account a running coupling constant,
leads to two, or more probably, a series of Regge poles
instead of the j plane cut obtained originally at fixed ᾱ.
However, this solution with more than one Pomeron sin-
gularity does not ensure the specific Q2 behavior required
by the analysis of [1] and obtained by the sliding mech-
anism. The running of the coupling constant, and more
generally the results of the next-to-leading BFKL correc-
tions [20], modify the singularity structure but could pre-
serve the sliding mechanism. Further study is needed in
this respect.

5 Conclusion and outlook

To summarize our results, using the full content of solu-
tions of the BFKL equation in a perturbative QCD frame-
work, and in particular their conformal invariance, we
have looked for the physical consequences of the higher
conformal spin components of the conformal expansion on
the problem of the Pomeron singularites. We have found,
under rather general conditions, that the obtained pat-
tern of effective singularities leads to two Pomeron contri-
butions, one “hard”, corresponding to the ordinary con-
formal spin 0 component and one “soft”, corresponding
to higher spin contributions, mainly spin 1. This situ-
ation agrees, at least in the large Q2 domain, with the
empirical observation of [1] leading to a “hard” Pomeron
with leading-twist behavior and a “soft” Pomeron with
higher-twist behavior. It is interesting to note that the
higher-twist behavior we obtain corresponding to the p =
1 component is of higher effective intercept than the one
which may be associated with the auxiliary branches of
the “hard” component p = 0. Thus, there is no doubt
that the p = 1 component behavior is emerging from the
other secondary BFKL contributions. However, its order
of magnitude remains to be discussed [14].

It is important to note that the higher spin components
rely on the existence of an asymptotic global conformal
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invariance. This invariance has been proved to exist in
the leading-log approximation. In the next-to-leading log
BFKL calculations, it has recently been advocated [21] to
be preserved, at least approximately. If this result is con-
firmed, and if the characteristics of the kernels are similar,
the rôle of the modified higher conformal spin components
is expected to be the same. Further tests of our conjec-
ture also imply a study of the specific couplings of the
higher spin components to the initial states and an exten-
sion of the predictions to the non-forward diffractive scat-
tering. Indeed, it has recently been shown [22] that the
photoproduction of J/Ψ gives evidence for no shrinkage
of the Pomeron trajectory. Thus the two Pomeron conjec-
ture could also be borne out by considering non-forward
processes.

If confirmed in the future, the two Pomeron conjecture
leads to further interesting questions, for instance:
(i) Can we built an Operator Product Expansion for the
structure functions, and thus higher-twist contributions,
incorporating the conformal invariance structure?
(ii) Can we get some theoretical information on the phys-
ical “soft” Pomeron by considering high-Q2 indications
given by perturbative QCD indications?
(iii) Can we see some remnants of the specific conformal
spin structure associated with the two Pomerons?
(iv) The sliding mechanism appears as a kind of a spon-
taneous violation of asymptotic conformal invariance: can
we put this analogy in a more formal way?

One interesting conclusion to be drawn from our study
is that the matching of hard and soft singularities could
be very different from expectation. Usually, it is expected
that a smooth evolution is obtained from the hard to the
soft region thanks to the increase of the unitarity cor-
rections to some “bare” Pomeron. By contrast, in the
empirical approach of [1] and in the theoretical sliding
mechanism discussed in the present paper, the “hard” and
“soft” regions are essentially dominated by distinct singu-
larities, with only small overlap. Clearly, this alternative
deserves further phenomenological and theoretical studies.
In particular, there have been suggestions [11] to extend
the study to (virtual) photon–photon reactions where the
perturbative singularities and their specific coupling are
expected to be theoretically well defined. For instance, if
the eikonal coupling is confirmed as a characteristic fea-
ture of the (virtual) photon coupling to the BFKL kernel,
the sliding mechanism should not work for the spin 1 com-
ponent and thus the would-be “soft” Pomeron is expected
to be absent from these reactions. Another case study is
the Pomeron in hard diffractive reactions where the slid-
ing mechanism, if present, could be different than for total
structure functions, and thus might lead to a different bal-
ance of hard and soft singularities.
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9. A. de Rújula et al., Phys. Rev. D 10, 1649 (1974)

10. C. Lopez, F. Barreiro, F.J. Yndurain, Zeit. für Phys. C 72,
561 (1996), and references therein

11. A. Bialas, private communication
12. J. Bartels, Nucl. Phys. (Proc. Suppl.) B 71, 47 (1999),

Sect. 3, (Proceedings of Multiparticle Dynamics 1997,
edited by Frascati, G. Capon, V.A. Khoze, G. Pancheri,
A. Sansoni), and references therein

13. H. Navelet, R. Peschanki, Nucl. Phys. B 515, 269 (1998)
14. N. Marchal, R. Peschanki, hep-ph/9905378
15. A.H. Mueller, W.-K. Tang, Phys. Lett. B 284 (1992) 123;

J. Bartels et al., Phys. Lett. B 348, 589 (1995)
16. S. Munier, R. Peschanki, Nucl. Phys. B 524, 377 (1998)
17. N.N. Nikolaev, B.G. Zakharov, Zeit. für Phys. C 49, 607

(1991)
18. M. Braun, G.P. Vacca, G. Venturi, Phys. Lett. B 388, 823

(1996)
19. N.N. Nikolaev, B.G. Zakharov, V.R. Zoller, JETP Lett.

(1997) 138; Pisma Zh. Eksp. Teor. Fiz. 66, 134 (1997)
20. V.S. Fadin, L. Lipatov, Phys. Lett. B 429, 127 (1998); G.

Camici, M. Ciataloni, Phys. Lett. B 430, 349 (1998)
21. S.J. Brodsky, V.S. Fadin, V.T. Kim, L.N. Lipatov, G.B.

Pivovarov, hep-ph/9901229
22. A. Levy, Phys. Lett. B 424, 191 (1998)


